Deep Learning of Image Features from Unlabeled Data for Multiple Sclerosis Lesion Segmentation
نویسندگان
چکیده
A new automatic method for multiple sclerosis (MS) lesion segmentation in multi-channel 3D MR images is presented. The main novelty of the method is that it learns the spatial image features needed for training a supervised classifier entirely from unlabeled data. This is in contrast to other current supervised methods, which typically require the user to preselect or design the features to be used. Our method can learn an extensive set of image features with minimal user effort and bias. In addition, by separating the feature learning from the classifier training that uses labeled (pre-segmented data), the feature learning can take advantage of the typically much more available unlabeled data. Our method uses deep learning for feature learning and a random forest for supervised classification, but potentially any supervised classifier can be used. Quantitative validation is carried out using 1450 T2-weighted and PD-weighted pairs of MRIs of MS patients, with 1400 pairs used for feature learning (100 of those for labeled training), and 50 for testing. The results demonstrate that the learned features are highly competitive with hand-crafted features in terms of segmentation accuracy, and that segmentation performance increases with the amount of unlabeled data used, even when the number of labeled images is fixed.
منابع مشابه
Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images
Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...
متن کاملA Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملSegmentation of Multiple Sclerosis Lesions in MRI-An Image Analysis Approach
This paper describes an intensity-based method for the segmentation of multiple sclerosis lesions in dual-echo PD and T2-weighted magnetic resonance brain images. The method consists of two stages: feature extraction and image analysis. For feature extraction, we use a ratio filter transformation on the proton density (PD) and spinspin (T2) data sequences to extract the white matter, cerebrospi...
متن کاملTversky as a Loss Function for Highly Unbalanced Image Segmentation using 3D Fully Convolutional Deep Networks
Fully convolutional deep neural networks have been asserted to be fast and precise frameworks with great potential in image segmentation. One of the major challenges in utilizing such networks is data imbalance, which is especially restraining in medical imaging applications such as lesion segmentation where lesion class voxels are often much less than non-lesion voxels. A trained network with ...
متن کامل